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Abstract. We present an algorithm of reduced computational cost which is able to estimate
kinetic model parameters directly from dynamic ECT sinograms made up of temporally inconsistent
projections. The algorithm exploits the extreme degree of parameter redundancy inherent in linear
combinations of the exponential functions which represent the modes of first-order compartmental
systems. The singular value decomposition is employed to find a small set of orthogonal
functions, the linear combinations of which are able to accurately represent all modes within
the physiologically anticipated range in a given study. The reduced-dimension basis is formed
as the convolution of this orthogonal set with a measured input function. The Moore–Penrose
pseudoinverse is used to find coefficients of this basis. Algorithm performance is evaluated at
realistic count rates using MCAT phantom and clinical99mTc-teboroxime myocardial study data.
Phantom data are modelled as originating from a Poisson process. For estimates recovered from
a single slice projection set containing 2.5× 105 total counts, recovered tissue responses compare
favourably with those obtained using more computationally intensive methods. The corresponding
kinetic parameter estimates (coefficients of the new basis) exhibit negligible bias, while parameter
variances are low, falling within 30% of the Cramér–Rao lower bound.

1. Introduction

Most present-day techniques for the reconstruction of emission computed tomography (ECT)
images assume that the projection data are obtained from a radionuclide source distribution
which does not vary in time. This is a poor assumption in most functional studies which involve
the use of a rotating camera which cannot acquire projections over 360◦ simultaneously. There
exists, consequently, a need for algorithms capable of solving the dynamic ECT reconstruction
problem, which involves the estimation not only of the underlying functional anatomical source
geometry, but also of the pharmacokinetics of injected radiotracer materials.

Currently, the routine method for conducting dynamic studies requires a set of
reconstructed images. Each image represents the source distribution during a time interval
in which activity is assumed to be stationary. Regions of interest (ROIs) are then delineated
on every image. The images are then stacked in order of acquisition, and the time evolution
of activity within corresponding regions across the entire image set is recorded. This process
produces a time–activity curve (TAC) for each ROI. A tracer kinetic model is then fit to each
TAC, using a one-dimensional regression method.

Each image of the series is produced by applying a tomographic reconstruction algorithm
to a separate set of projection data, obtained during each time interval. The projection data set
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comprises measurements taken at several angles around the distribution of radioactive sources.
Implicit in the tomographic reconstruction process is the assumption that all projections
are acquired from a time-invariant distribution. In dynamic studies, where the source
activity is varying in time, image space methods yield biased kinetic parameters estimates
so estimation must be performed directly on the measured projection data to obtain unbiased
estimates.

Compartmental models are conventionally employed to describe regional tracer kinetics.
For example, in myocardial single-photon-emission computed tomography (SPECT), one of
the most commonly performed clinical imaging procedures in nuclear medicine, the dynamics
of tracers such as99mTc are modelled using a first-order single-compartment model. It has
been shown that the wash-in parameter of this model is correlated with the perfusion of blood
in the myocardium, and consequently offers a measure of myocardial viability (Smithet al
1994). Algorithms which have been developed for the solution of the direct estimation problem
may be classified according to their assumed dynamic model. The algorithms proposed by
Limber et al (1995) and Bauschkeet al (1999), for example, assume that the tracer kinetics
may be modelled as decaying real exponential functions. This is a special case of a first-
order single-compartment model in which the blood input function is impulsive. Farnocombe
et al (1999) extended the method of Limberet al by allowing recovery of all TACs that are
monotonically decreasing functions of time. A limitation of these methods is that they do not
allow for modelling of the wash-in phase of the tracer kinetic curves.

Reutteret al (1998, 1999) have demonstrated an algorithm capable of fitting single-
compartment models to both phantom and clinical myocardial studies. Consequently, both
tracer wash-in and wash-out parameters may be estimated. A stabilized Newton–Raphson
optimization algorithm is used to solve the nonlinear weighted least squares problem whose
solution yields the kinetic parameters directly from the acquired projection data. While this
method is effective in providing the desired estimates, the amount of computation required is
large for studies involving many dynamic regions. The objective of the approach presented
here is to reduce these requirements through reduction of dimensionality and linearization of
the problem.

Linear algorithms for the estimation of the kinetic parameters in dynamic ECT, which
employ a preselected time–activity basis of exponential functions, have been presented in
the past (Cunningham and Jones 1993, Chiaoet al 1995). Preselection of the kinetic basis
converts a problem which is nonlinear in the exponential rate parameters into a much simpler
linear problem. Basis sets used by these algorithms are typically composed of families of
decaying real exponential functions having rate constants selected so as to span the range of
physiologically feasible modes expected in the data. For example, Cunningham and Jones
(1993) utilized a set ofM = 100 sampled exponential functions:

zm̃[l] = e−km̃l�t l = 0,1,2, . . . , L− 1 (1)

wherel is a discrete time index andkm̃ ∈ [10−4, 1] s−1. Thekm̃ were spaced logarithmically on
this interval, whose bounds were selected for the application of exponential spectral analysis
to cerebral positron emission tomography (PET) studies using three different tracer agents.

As we have shown previously, an orthogonal basis set of six functions (sampled regularly
at 32 points int ∈ [0, 300 s]), is able to approximate any one of thesezm̃ with a maximum
deviation of well under 1% (Maltzet al 1998). The large dimensionality reduction which
is possible illustrates the well-known high level of redundancy that exists among families of
closely parametrized real decaying exponentials (Reich 1981, Lanczos 1956, p 275). Here, we
exploit this redundancy to achieve significant computational savings over previous algorithms
for exponential spectral analysis.
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The algorithm we propose differs significantly from most of its predecessors in a
philosophical sense, in that it does not endeavour to recover actual compartmental model
parameters but rather the time–activity curves for each compartment. If the TACs are perfectly
recovered, then it is clear that application of a one-dimensional optimization algorithm to
each TAC will yield a correct set of kinetic parameter values. The solution obtained may,
however, not be unique owing to poor conditioning or parameter redundancy in the model.
Consequently, it seems sensible to regard the accurate extrication of the correct TACs from
the projection data as the most important objective in dynamic ECT. This is the philosophy we
adopt here.

2. Problem formulation

We begin by assuming that the underlying source distribution�(x) has been completely
segmented into several regions of interest�n(x), n = 1,2, . . . , N .

For the application of the algorithm to myocardial studies during which both wash-in
and wash-out of the tracer occur, such as those involving99mTc-teboroxime, we assume that
tracer kinetics are governed by a single compartment model. To cope with possible region
heterogeneity (O’Sullivan 1993), we incorporate additional flexibility in allowing the TAC of
each ROI to be composed of linear combinations of the responses of several such models:

φn(t) =
M̃∑
m̃=1

km̃n1 i(t) ∗ e−km̃2 t (2)

wherei(t) is the measured blood input function, and the ‘*’ operator denotes convolution. The
wash-in coefficientkm̃n1 and wash-out parameterkm̃2 describe the contribution of thẽmth mode
to the time activityφn(t) of thenth region.

We prepare the exponential spectral basis (1) for manipulation by forming the(L × M̃)

matrix X whose m̃th column is zm̃[l] as defined in (1), and invoke the singular value
decomposition (SVD) to find orthogonal basis vectors for the range ofX (Maltz et al 1998).
These are the left singular (column) vectorsum̃ of the SVD ofX:

X = USṼT Ũ = (u1 u2 . . .uM̃ ) (3)

whereV is the matrix of right singular vectors, andS is the diagonal matrix of singular values.
We associate the discrete time indexl with each row ofU. Depending on the degree of accuracy
required in the sampled representation of the TAC’sφn(t), we utilize only the firstM � M̃ of
Ũ such that:

U ≡ (u1 u2 . . .uM). (4)

Typically,M ≈ 4 is sufficient for the myocardial imaging applications we have studied.
We then form the matrixC from the columns ofU convolved with the sampled blood

input functioni[l], which we assume has either been measured or estimated:

C′ ≡ (c1 c2 . . . cM) (5)

wherecm = um ∗ i[l], l = 0,1, . . . , L− 1.
With the kinetic model formalized, we wish to estimate the coefficientsµmn of thecm for

all regions, which form the approximated TACs as:

φ̂n[l] =
M∑
m=1

µ̂mncm[l] l = 0,1, . . . , L− 1 (6)

whereL = RP , the total number of angular projections, givenR camera rotations withP
angular projections per rotation.
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3. Problem solution

Let the row vectorsyTp , of lengthQ each represent a single angular projection measurement,
containing the measurements ofQ bins along the projection. These vectors form the rows of
theRP ×Qmeasured sinogram matrix̃Y, whenP angular projections are acquired over each
of R camera rotations.

We begin by forming the lexicographically stacked projectionRPQ× 1 vectorỹ as:

ỹ ≡




y1

y2
...

yRP


 . (7)

We project each of the segmented regions�n(x) using the same projection geometry
and system response matrix that applies to the imaging system, to form theN single rotation,
P ×Q sinogramsWn. We denote theP row vectors each containing an angular projection as
wT
np, and stack thewnp in an identical manner to that shown in (7), giving thePQ× 1 vectors

w̃n.
In order that multiple rotation data may be accommodated, it is necessary to replicate

the geometric weighting factors contained in the calculated sinogramsR times. A similar
replication is required so that we may solve for the coefficients of each of theM modes. To
this end, we construct theRPQ×M matricesGn which are block matrices containingR×M
identical blocks ofw̃n. Gn is given by:

Gn ≡

M blocks


w̃n · · · w̃n

...
...

...

w̃n · · · w̃n


 R blocks. (8)

The geometric weighting matrix for the activity contributions of each region for all modes
and all rotations is then defined as:

G ≡ [ G1 G2 · · · GN ]. (9)

The second matrix we will describe consists of blocks containing the convolved basis
functionscm. This matrix must be constructed so that each of theRPQ projection bin
measurements, as a function of discrete time indexl, may be expressed as a linear combination
of thecm. For each time samplel, we form thePQ×M matrices

Cl ≡




c1[l] c2[l] · · · cM [l]
c1[l] c2[l] · · · cM [l]
...

...
...

...

c1[l] c2[l] · · · cM [l]


 (10)

wherecm[l] is thelth element ofcm, from which theRPQ× nm basis weighting matrix

C ≡




C0 C0 · · · C0

C1 C1 · · · C1

...
...

...
...

CL−1 CL−1 · · · CL−1


 (11)

is composed.
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Figure 1. 2D slice of 3D MCAT emission phantom. A single slice through the myocardium
transverse to the long axis of the body is taken as phantom for these studies. The liver (region 6) is
shown to the left of the heart in this illustration. We see that the myocardium contains two defects
(darker regions 4 and 5) and normal region 3, which is rendered non-contiguous by the defects.
Region 2 is the myocardial blood pool, while region 1 represents the background activity in the
torso.

The vectorµ̂ containing the coefficient estimatesµ̂mn is easily obtained via solution of
the linear system:

ỹ = Fµ̂ = (G · C)µ̂ (12)

where the operator ‘·’ denotes element-by-element multiplication.
Equation (12) may be solved directly in the least-squares sense giving:

µ̂ = (FTF)−1FT ỹ (13)

when(FTF) is invertible. When this is not the case, the system of equations is ill-conditioned
and the SVD may be used to find the pseudoinverse. A solution which does not depend
on those singular vectors corresponding to small singular values may then be obtained. In
practice, when the number of regionsN is small with respect to the number of projection bin
measurements, (12) is almost invariably highly overdetermined.

We henceforth refer to the algorithm developed above as the ‘convolved-orthogonal basis
reconstruction algorithm’ (COBRA).

4. Algorithm evaluation

The algorithm is first applied to a single slice of a dynamic realistic mathematical cardiac torso
(MCAT) phantom (Tsuiet al 1993), and then to a99mTc-teboroxime myocardial patient study.

4.1. Phantom study

The 3D MCAT phantom is shown in figure 1. This phantom models not only the myocardium,
but also the myocardial blood pool, the background activity in the body, and the liver. The
projections of a single slice transverse to the long axis of the body were chosen for this
evaluation.

The simulated dataset was acquired over 15 rotations of a single-headed camera, taking
120 regularly spaced angular measurements per rotation, of 64 projection bins each. The data



6 J S Maltz

0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (minutes)

A
m

pl
itu

de

u
1
[l]

u
2
[l]

u
3
[l]

u
4
[l]

Figure 2. Orthogonal basis functionsu1, u2 andu4 together with supplemental impulsive basis
functionu3 are employed in the phantom studies whereM = 3. The former are the first three
vectorsum of U. The latter is included to model the blood pool within the imaged distribution.

were derived from a Poisson process which generated either 1×105, 2.5×105 or 1×106 total
detected events during the 15 min imaging period. While attenuation was modelled, non-ideal
system response and scatter were not.

A total of six regions, having the TACs illustrated in figure 5, were included in the phantom
data.

The orthogonal basis functions were calculated through the application of the SVD to
a matrix of 100 sampled decaying real exponential functions parametrized by rate constants
logarithmically spaced in the interval [5× 10−4, 2]. This interval includes the true range of
k2 ∈ [0.002, 0.6] from which the TACs are derived. In practice, of course, the true range is
unknown, so the choice of interval fork2 should ensure that all physiologically feasible modes
are accommodated. The numberM of left singular vectorsum retained after application of the
SVD is selected as the minimum number needed to approximate all of the exponential functions
zm[l] to within 1% peak deviation, using the reduced-dimension basis. An additional basis
functionuM+1[l] = δ[l] is included to allow for explicit modelling of the blood pool within
the imaged distribution, whereδ[l] is the discrete-time impulse. The basis functions employed
appear in figure 2.

The algorithm was tested overI = 100 andI = 1000 sinogram realizations. Owing
to the parameter redundancy inherent in functions involving exponential sums, we do not
attempt to recover this form of parametrization for the recovered TACs. Since the values ofµ̂

have no meaningful physical interpretation, and are also not guaranteed to describe each TAC
uniquely, the bias and variance of parameter values themselves are considered secondary to
metrics indicating the ability of the algorithm to recover TACs which are accurate estimates
of the true TACs. As a measure of TAC similarity, we employ the following metric which
describes the mean (over several noise realizations of the measured sinogram) of the mean
RMS deviation (over all samples) of a recovered TACφ̂n[l] as a percentage of original TAC
peak value ofφn[l], according to:

Mn
dev ≡ 1

I

I∑
i=1

√
1
L

∑L
l=1(φn[l] − φ̂n[l])2

maxl∈{0,1,...,L−1} φn[l]
× 100. (14)
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We choose to normalize by the peak original TAC value, as this allows us to conveniently
compare the deviation between the two curves as a fraction of the overall scale of the true
TAC. In this way, we avoid the meaningless large biases which occur in sample-by-sample
comparison of two TACs, at points where the power in the true and recovered TACs is close
to the noise power.

Our secondary interest is to determine the behaviour of theµ̂ as a function of the data. The
mean of all estimateŝ̄µ is compared with the trueµ0 (as recovered from noise-free projection
data) to evaluate bias in the estimates. Were the projection data derived from an i.i.d. Gaussian
process, we would be assured that the estimator (13) was fully efficient in that it achieves
the Craḿer–Rao lower bound (CRLB) on parameter variance. Since we are dealing with
Poisson data, which are asymptotically Gaussian as the number of counts increases, we expect
efficiency to fall off as the signal-to-noise ratio (SNR) decreases.

For those parameters which are found to be unbiased, the variance of each estimate is
calculated over many noise realizations and compared with the CRLB. In order to derive the
appropriate CRLB, we must first formulate the Fisher information matrix for the appropriate
likelihood function. Since the data are derived from a Poisson process, their log-likelihood is
given by:

ln �(ỹ;µ) =
∑
p,q

(ỹpq ln y ′
pq(µ)− y ′

pq(µ)) + κ (15)

where the measurement datum in theqth bin of thepth projection isỹpq , and they ′
pq are the

elements of the vectory′ obtained by evaluating the model projections (12) for a particular
estimate of parameter vectorµ̂(ỹ) based on a particular realization of the measurement data
ỹ:

y′(µ) = Fµ̂(ỹ). (16)

The constantκ in (15) is independent ofµ, and is eliminated in the formulation of the Fisher
information matrix which is given by:

J(µ) ≡ E([∇µy
′(µ) ln �(ỹ;µ)][∇µy

′(µ) ln �(ỹ;µ)]T ) (17)

= ∇µy
′(µ)diag−1{y′(µ)}∇µy

′(µ)T . (18)

where the centre term is a diagonal matrix containing the inverse of the elements of the vector
y′(µ) (Chiaoet al 1994).

When the estimates of the parametersµ̂ are unbiased, their variance is bounded according
to the Craḿer–Rao inequality:

Var[µ̂i(ỹ)− µ0
i ] � J ii i = 0,1, . . . ,MN (19)

where theJ ii are the diagonal elements ofJ(µ)−1, andµi andµ0
i are theith elements of̂µ

andµ0 respectively (van Trees 1968, p 174). The latter vector contains the true parameters.
When the contribution of a specific basis function towards a TAC is negligible, even

negligible estimation errors produce large parameter biases. Consequently, it is appropriate
to perform analysis of parameter bias and variance only on those coefficients which are large
enough so as to introduce significant power into the recovered TAC. To this end, we introduce
the metric

Mmn
pow = ‖µmncm‖2

‖ ∑M
j=1µjncj‖2

× 100 (20)

wherecm is themth convolved basis function and‖ · ‖ denotes the Euclidean norm. The
argument of the norm in the denominator of (20) is just thenth TAC. This metric gives the
ratio of the power contained within a convolved basis function or ‘sub-TAC’ percentage of
total TAC power and can hence be used to determine which coefficients should be subject to
statistical analysis.

David W Hardy
Please define `i.i.d.'
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Figure 3. Specific 2D slice through imaged torso, the projections of which are selected for algorithm
evaluation. The contours shown delineate tissue regions.

4.2. Patient study

To establish whether the COBRA algorithm is able to produce useful estimates of regional
TAC’s in a clinical setting, we apply the algorithm to a single transverse slice from a99mTc-
teboroxime myocardial patient study. While the true regional kinetics for this dataset are
unknown, we are able to compare our results with those obtained previously through application
to the same data of the methods of Formiconi (1993) and the direct single-compartment fit to
projection data (DSCFP) algorithm of Reutteret al (1999).

The method of data acquisition has been described previously, but is repeated here for
convenience (Reutteret al 1999). A dynamic SPECT study was performed at the University
of Utah Medical Center, using a Picker PRISM 3000XP three-headed SPECT system. To allow
for attenuation correction, an initial transmission scan was performed by mounting 65 cm focal
length fan-beam collimators onto each detector head. A153Gd line source was introduced, and
120 transmission projections of 64× 64 pixels were acquired over 360◦. Parallel collimators
were then employed for the emission study, which proceeded after vasodilation was induced
by adenosine. The initiation of data acquisition coincided with the injection of 25 mCi99mTc-
teboroxime. During the total imaging time of 15 min, a full (360◦) set of 120 angular projections
was acquired every 10 s.

The imaged distribution was delineated into the regions: left ventricular myocardium,
blood pool, liver and background tissue using the automated volume of interest specification
algorithm (Reutteret al 1999).

The 2D slice illustrated in figure 3 was selected for the purpose of algorithm evaluation.
A primary motivation for the development of algorithms able to reconstruct imaged

distributions directly from projections is the ability of such algorithms to base estimates on
projection data which are temporally inconsistent. Owing to the ability of the acquisition
system used in this study to perform rapid imaging, projection inconsistency does not
constitute a significant problem. In order to artificially introduce projection inconsistency, we
significantly decrease the time resolution of the study by summing each set of four sequentially
acquired sinograms. This yields a set of 22 sinograms sampled at 40 s intervals. Since the
activity of regions within the distribution changes by more than 100% during intervals of this
length, a large degree of inconsistency is present in this reduced data set.
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Figure 4. At 105 counts, the algorithm is able to reconstruct a sinogram (right) from the
noisy measured sinogram (centre). The former is visually indistinguishable from the original
sinogram (left).
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Figure 5. At 2.5 × 105 counts, the mean TAC estimates recovered over 1000 noise realizations
(− −) fit the true (phantom) data very closely, illustrating a lack of discernible bias in the TACs.
The original TAC samples are denoted by the symbols in the figure.

In order to compensate for attenuation, an attenuation map was constructed from truncated
transmission data using 20 iterations of the ML-EM algorithm. The same algorithm was
employed to reconstruct the emission data for purposes of region delineation. Registration
between transmission and emission data was accomplished using three radioactive markers
positioned externally around the thorax of the patient.

Author query
Sense as intended in figure 5 caption?(What are the full curves?)



10 J S Maltz

Table 1. Results of 100 noise realization tests of the parameter estimation algorithm.

RMS deviation error (Mdev%)

Test Counts Flops TAC 1 TAC 2 TAC 3 TAC 4 TAC 5 TAC 6

1 5.0 × 105 1.1 × 108 0.18 0.58 0.75 6.98 4.35 0.27
2 2.5 × 105 1.1 × 108 0.17 0.87 1.11 8.88 5.58 0.51
3 1.0 × 105 1.1 × 108 0.19 1.09 1.54 14.69 8.44 0.46

5. Experimental results

5.1. Phantom study

Figure 4 illustrates the ability of the algorithm to estimate the kinetic parameters (coefficients of
the convolved orthogonal basis set) and then reconstruct the sinogram of a dynamic distribution
given the measured sinogram and a segmentation of the underlying source distribution. Figure 5
compares the original and mean recovered TACs at a total sinogram count value of 2.5× 105,
over 1000 realizations. No significant deviation between the original TACs and their estimates
is discernible.

Note that we have only processed data from the first five camera rotations, as inclusion
of the data obtained during the final 10 revolutions did not materially affect the estimates
obtained. This behaviour stems from the highly overdetermined nature of the linear system
solved by the algorithm.

Table 1 contains the results of three tests, each of 100 noise realizations at respective count
totals per slice of 5×105, 2.5×105 and 1×105. Goodness of fit between ideal and recovered
TACs is given in terms of metricMdev given in (14). The average number of floating-point
operations (flops) required to compute the parameters of a single sinogram noise realization
also appears for each test.

Most of the errors were well below 5%, even at the lowest total counts value tested, i.e. 105.
TAC 4, which contains the least power of all the TACs, is also the most poorly recovered, with
a worst case error ofMdev = 14.7%.

Figure 6 illustrates an additional pitfall which may be encountered when a convolved
orthogonal basis set is used, for which the numberM of left singular vectors retained from
the SVD is too large. In these results from a single noise realization test at 105 counts, we
see that recovered TACs 4 and 5 oscillate—something which would not occur were we to use
a basis of exponential functions. Oscillation in the TACs is chiefly due to the contributions
of oscillatory singular vectors in the basis whose corresponding singular values are small,
but whose coefficients are assigned large values by the algorithm. Intuitively, these singular
vectors were ‘intended’ by the SVD to provide low-amplitude, high-frequency detail, rather
than large amplitude excursions. The tremendous deterioration in performance evident in
a comparison of figures 6 and 7 is due to the simultaneous increase in number of singular
vectors selected for the basis (M) from 3 to 5, and drop in the total sinogram count statistic
from 2.5 × 105 to 1× 105 counts. Oscillation is avoided in figure 7 through settingM = 3,
in effect discarding those left singular vectors whose contributions to the approximation are
comparable to or smaller than the noise power. This is the rationale behind the application of
the 1% peak deviation criterion on the approximation described in section 4.1.

We see from tables 2 and 3, that absolute bias is below 1% for all parameters for which
Mpow is above 4%. Parameter 4 of TAC 4 (µ44) is the most poorly estimated of all parameters,
with a bias of 124%. However, the convolved basis function scaled by this parameter contains
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Figure 7. The oscillations present in figure 6 are not evident in the TAC estimates obtained over a
typical single realization at 2.5 × 105 counts, whenM = 3.

less than 0.1% of the total power within TAC 4, so this bias is not a significant source of
error.

We see also, from table 2 and figure 8, that variances for the estimates for those coefficients
which significantly weight the TACs are reasonably close to the CRLB, and do not exceed
it by more than 31%. We note that this bound is only applicable to unbiased parameters,
or parameters whose bias is insensitive to changes in the parameter value at the solution
(van Trees 1968, p 174). Comparisons of parameter variances with their bounds may
consequently be meaningless for those parameters which exhibit large bias. An example
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Table 2. Quantities used in analysis of parameter bias and variance shown for TACs 1 through 3.
These statistics were obtained over 1000 noise realizations, using the set of four basis functions
um shown in figure 2 convolved with the blood input function. The 1000 measured sinograms
contained 2.5 × 105 counts each over 15 revolutions. Only the first five revolutions were used to
produce these results. The Cramér–Rao lower bound is abbreviated as ‘CRLB’.

TAC 1 TAC 2 TAC 3

% power in subTAC 1 42.3 42.2 95.2
% bias in coefficient 1 −0.24 −0.35 −0.61
Value 1.5 × 10−3 3.0 × 10−4 3.6 × 10−3

Variance 4.4 × 10−9 2.4 × 10−12 4.9 × 10−9

Var. as % of CRLB 115.56 118.05 113.46

% power in subTAC 2 55.6 55.7 2.7
% bias in coefficient 2 −0.66 −0.52 −2.66
Value 2.6 × 10−3 −5.1 × 10−4 −9.1 × 10−4

Variance 1.1 × 10−8 7.6 × 10−12 1.2 × 10−8

Var. as % of CRLB 115.30 112.37

% power in subTAC 3 77.9 77.4 0.7
% bias in coefficient 3 −0.48 −0.77 0.13
Value 3.3 × 10−2 6.6 × 10−3 5.0 × 10−3

Variance 2.1 × 10−6 2.8 × 10−9 2.6 × 10−6

Var. as % of CRLB 114.05 120.49 111.52

% power in subTAC 4 2.6 2.5 0.0
% bias in coefficient 4 −0.21 −1.24 12.54
Value −6.6 × 10−4 −1.3 × 10−4 −9.9 × 10−5

Variance 2.8 × 10−8 2.3 × 10−11 3.3 × 10−8

Var. as % of CRLB 114.51 130.09
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Figure 8. The upper figure shows the recovered parameter values versus their true values, and
consequently indicates the bias in the recovered parameters. The lower graph compares the variance
in the recovered convolved-orthogonal basis coefficients with the Cramér–Rao lower bound of each.

of such a parameter isµ44. For this reason, this analysis of variance is performed only for
those parameters exhibiting less than 2% absolute bias. It is interesting to note that the bias
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Table 3. Quantities used in analysis of parameter bias and variance shown for TACs 4 through 6
(continuation of table 2).

TAC 4 TAC 5 TAC 6

% power in subTAC 1 86.0 73.4 104.1
% bias in coefficient 1 −1.74 −1.40 −0.57
Value 1.2 × 10−3 1.3 × 10−3 6.3 × 10−3

Variance 8.1 × 10−8 2.6 × 10−8 1.8 × 10−9

Var. as % of CRLB 120.49 107.59 117.03

% power in subTAC 2 10.7 21.5 0.0
% bias in coefficient 2 −0.54 −0.77 −2.64
Value −6.4 × 10−4 −1.0 × 10−3 −2.1 × 10−4

Variance 2.0 × 10−7 8.8 × 10−8 4.2 × 10−9

Var. as % of CRLB 123.88 118.42 120.81

% power in subTAC 3 2.5 3.0 0.4
% bias in coefficient 3 0.67 10.73 −0.98
Value 3.4 × 10−3 4.2 × 10−3 6.6 × 10−3

Variance 4.0 × 10−5 3.1 × 10−5 6.0 × 10−7

Var. as % of CRLB 132.11 127.15 120.37

% power in subTAC 4 0.0 0.1 0.0
% bias in coefficient 4 124.32 −40.58 −5.26
Value −4.1 × 10−5 8.3 × 10−5 −1.1 × 10−4

Variance 5.4 × 10−7 2.4 × 10−7 1.2 × 10−8

Var. as % of CRLB 130.28 119.37 119.38

introduced through the statistical mismatch between the least squares estimator (which is
optimal for i.i.d. Gaussian distributed projection bin data) and the Poisson measurement data
is not appreciably deleterious. As expected, efficiency is poorer for TACs 4 and 5 which had
a lower SNR.

Since the performance of this statistically suboptimal estimator appears satisfactory for
clinical purposes, in that normal and compromised myocardial regions are well distinguished by
their recovered TACs, we have not pursued the maximization of the Poisson likelihood function,
as this requires iterative methods which are significantly more computationally intensive than
the algorithm presented here, which processes this simulated data in under 15 s on a Pentium II
450 MHz CPU.

5.2. Patient study

Figure 9 compares TACs derived by applying Formiconi’s method with those obtained using
the COBRA algorithm presented here. Corresponding TACs appear similar, and the decreased
time resolution and greater smoothness of the COBRA TACs is evident. Quantitatively, we
haveMdev = 9.4%.

In figure 10, TACs derived through application of the DSCFP due to Reutteret al are
compared with the COBRA TACs. Since the latter method was applied to the estimation of
myocardial and liver activities alone, while Formiconi’s method was employed to determine
the background and blood pool TACs, only the two former responses are shown. Again, the
two sets of curves compare favourably, withMdev = 7.3%.

The algorithm executes in under 35 s on a Pentium II 450 MHz processor.
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Figure 9. Comparison of TACs recovered via Formiconi’s method with those obtained using the
COBRA algorithm (dashed lines).
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Figure 10. Comparison of TACs recovered via the direct fit of a single compartment model to
projection data (method of Reutteret al) and the COBRA method. Blood and background TACs
are not shown, as these were estimated using Formiconi’s method (Reutteret al 1999).

6. Conclusion

The experimental results indicate that the proposed COBRA algorithm is able to rapidly
recover TACs from temporally inconsistent dynamic SPECT datasets. In phantom studies, the
recovered parameters typically exhibit a small bias well below 2%, and estimator efficiency is
within 30% of the Craḿer–Rao lower bound on parameter variance.

Author query
The key to the curves is unclear in figure 10(both full curves!)
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When applied to a clinical myocardial SPECT study rendered temporally inconsistent
through artificial reduction of time-resolution, the recovered curves compared favourably with
those obtained through application of the methods of Formiconi and Reutteret al to data with
a higher temporal resolution.

The fact that good performance was obtained using a basis set of greatly reduced dimension
provides empirical verification of the large degree of parameter redundancy present in the
spectral formulation employed by Cunningham and Jones (1993). Consequently, there is no
assurance that parameter vectors obtained using exponential spectral methods are unique, and
results should be interpreted with caution. The use of the SVD, or other methods of analysis
(Reich 1981), are recommended for the determination of the degree of redundancy present
within the spectral basis employed in a particular study. In addition, analysis of parameter
bias and variance over many noise realizations may be necessary in order to ensure that the
coefficients of the spectral model cluster around a single mean parameter vector.

While many previous algorithms have required access to powerful computing equipment
when applied to large multislice, multiregion studies, we have demonstrated an algorithm
which scales approximately as O(RPQ(MN)2 + (MN)3) with M ≈ 4 rather thanM ≈ 100
as in the spectral method of Cunningham and Jones The method of Reutteret al is more
complex, scaling approximately as O(RPQN4 +N5) per iteration. However, for typical large
clinical datasets with few regions (RPQ large), computation is dominated by the O(RPQN4)

term and the DSCFP and COBRA algorithms incur a similar computational cost forM ≈ N .
The computation time required for the application of COBRA to the clinical study using a
personal computer was 35 s versus 58 s for the DSCFP algorithm.

One of the major advantages of reducing the number of kinetic parameters to be estimated
is that it allows, theoretically, the estimation of the parameters of a greater number of regions
at a given signal-to-noise ratio. This is important in the scenario of clinical diagnostics where
wish to detect myocardial defects. Since the location of potential defects is unknown, we
must segment the myocardium into several regions before estimation proceeds. This is in
contrast to the clinical application of COBRA presented here, where we assumed homogeneous
activity within the myocardium. The regions defined in the prior segmentation should be at
least as small as the size of a physiologically significant myocardial defect. By recovering
the individual TACs of the ROIs in this prior segmentation, defects may be revealed, and a
diagnosis made.

The main drawback in changing the TAC basis away from the natural set of decaying
real exponentials is that a significant amount ofa priori knowledge which restricts the form of
impulse response to that characteristic of first-order compartmental models is lost. At very low
total count levels, where this information is important, one can expect the COBRA algorithm
to yield results that are inferior to those spectral techniques which retain the exponential basis.
This may be partially ameliorated by placing constraints on the magnitudes of the coefficients of
those basis functions whose corresponding singular values are small. Preliminary experiments
indicate that the solution of the least squares problem (13), under the constraint that all TAC
estimates are non-negative is effective at preventing the recovery of physiologically infeasible
TACs, even when the number of photon counts per region is decreased by an order of magnitude
(Maltz 2000). Unfortunately, this requires the solution of the problem by means of an iterative
technique such as quadratic programming, which increases computational requirements.

Finally, let us consider the possible limitations of the performance of the algorithm in
terms of the problem-dependent parameters: the spectral range which may be accommodated,
the SNR of the data and the number of regions to be resolved. The results presented here
reveal no limitations in the quality of approximation using the new basis, as long as this basis
is derived from only those singular vectors that are necessary to approximate the spectral range.
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The recovered estimates appear robust at realistic noise levels. For studies with very low
count statistics, however, the decrease in estimator efficiency observed suggests the need for
an estimator better matched to the Poisson distribution of the data.

In our analysis, we have not varied the number of regions to establish how many regional
TACs may be resolved at a given SNR. As the number of regions is increased, the condition
of (13) will deteriorate, and some form ofa priori knowledge will be required to restrict the
solutions to those which are physiologically feasible. In preliminary studies, the imposition
of simple non-negativity constraints on TAC values seems sufficient, allowing the recovery
of 256- and 1024-region dynamic phantoms at respective total count values of 105 and 106,
with an RMS deviation error between true and recovered TACs of approximately 20% (Maltz
2000).
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